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Plasma turbulence is a ubiquitous dynamical process that transfers energy across 
many spatial and temporal scales in astrophysical and space plasma systems1–8. 
Although the theory of anisotropic magnetohydrodynamic (MHD) turbulence has 
successfully described phenomena in nature, its core prediction of an Alfvénic 
transition from weak to strong MHD turbulence when energy cascades from large 
to small scales has not been observationally confirmed9,10. Here we report the first 
observational evidence for the Alfvénic weak-to-strong transition in MHD 
turbulence in the terrestrial magnetosheath using the four Cluster spacecraft. The 
observed transition indicates the universal existence of strong turbulence 
regardless of the initial level of MHD fluctuations. Moreover, the observations 
demonstrate that the nonlinear interactions of MHD turbulence play a crucial role 
in the energy cascade, widening the directions of the energy cascade and 
broadening the fluctuating frequencies. Our work takes a critical step toward 
understanding the complete picture of turbulence cascade, connecting the weak 
and strong MHD turbulence systems. It will have broad implications in star 
formation, energetic particle transport, turbulent dynamo, and solar corona or 
solar wind heating. 

The theory of anisotropic MHD turbulence has been widely accepted and adopted 
in plasma systems, ranging from clusters of galaxies3,4, the interstellar medium5,6, 
accretion disks7, the heliosphere11,12, to nuclear fusion devices8,13. One of the most 
critical predictions of the theory is an Alfvénic transition from weak to strong 
turbulence when energy cascades from large to small scales9,10. The self-organized 
process from weak to strong turbulence is the cornerstone of understanding the energy 
cascade in the complete picture of MHD turbulence. In incompressible MHD (IMHD), 
when 𝜏! ≪ 𝜏"#  (referred to as weak turbulence), the weak, three-wave interaction 
transfers energy to higher 𝑘$, whereas no energy cascades to higher 𝑘∥, where 𝜏! =
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1/(𝑘∥𝑉!) is the linear Alfvén wave time, 𝜏"# = 1/(𝑘$𝛿𝑉$) is the nonlinear cascade 
time,	 𝑉!  is the Alfvén speed, 𝛿𝑉$  is the velocity fluctuation perpendicular to the 
mean magnetic field (B0), and 𝑘$  and 𝑘∥  are wavenumbers perpendicular and 
parallel to B09,14. As turbulence cascades to smaller scales, the nonlinearity strengthens 
until reaching the critical balance (𝜏!~𝜏"# ) at the transition scale (𝜆&' ). At scales 
smaller than 𝜆&', Alfvén wave packets are statistically destroyed in one 𝜏!, and the 
non-resonant three-wave interaction is permitted, creating strong turbulence9,15–17. In 
compressible MHD (CMHD), small amplitude fluctuations can be decomposed into 
three eigenmodes (Alfvén, fast, and slow modes) in homogeneous plasma18–22, wherein 
Alfvén modes show similar properties to those in the IMHD context, e.g., the 
Kolmogorov spectrum and scale-dependent Goldreich-Sridhar anisotropy23,24. 
Moreover, the cascade of Alfvén modes is almost independent of fast and slow modes23. 

Recent numerical simulations have confirmed the Alfvénic weak-to-strong 
transition in both IMHD turbulence and Alfvén modes decomposed from CMHD 
turbulence19,25,26. However, such a transition has not been observationally confirmed. 
Most astrophysical and space plasma is compressible, and density fluctuations cannot 
be neglected due to finite plasma 𝛽, i.e., the ratio between the plasma thermal pressure 
and magnetic pressure. Therefore, the terrestrial magnetosheath, filled with decelerated 
and compressed solar wind, provides an excellent and universal laboratory to study 
plasma turbulence27,28. In this study, we present the first observational evidence for the 
Alfvénic weak-to-strong transition in the terrestrial magnetosheath and estimate the 
transition scale 𝜆&' using four Cluster spacecraft data29. 

Here we analyze an event on 2-3 December 2003, during which time the Cluster 
spacecraft were located on the flank of magnetosheath around [1.2, 18.2, -5.7] RE (Earth 
radius) in geocentric-solar-ecliptic (GSE) coordinates. The four spacecraft were flying 
in a tetrahedral formation with relative satellite separation 𝑑()~200 km (~three times 
the proton gyro-radius). Fig. 1 shows an overview of the event observed by Cluster-1. 
Fig. 1a-b show the magnetic field (B) measured by the Fluxgate Magnetometer 
(FGM)30 and the proton bulk velocity (Vp) measured by the Cluster Ion Spectrometry 
(CIS)31. In Fig. 1c, the proton density (Np) measured by CIS is consistent with the 
electron density measured by the Waves of High frequency and Sounder for Probing of 
Electron density by Relaxation (WHISPER)32, cross-verifying the reliability of 
plasma data.  

We set a moving time window with a length of five hours and a step size of five 
minutes. Fig. 1d shows the time series of spectral slopes of the trace magnetic and 
velocity power in the spacecraft-frame frequency 𝑓()~[0.001Hz, 0.1𝑓)*], where the 
proton gyro-frequency 𝑓)*~0.24 Hz (see Methods). We only analyze fluctuations with 
spectral slopes close to -5/3 or -3/2 because we focus on investigating the transition of 
energy cascade in fully developed plasma turbulence. The remaining magnetosheath 
fluctuations with spectra close to 𝑓()+,  are typically populated by uncorrelated 



   

 

 

fluctuations33,34 and are beyond the scope of the present paper. We choose the shorter 
interval between the two vertical dashed lines to eliminate the edge effects in wavelet 
transforms35. During this interval, the proton gyro-radius is 𝑟)*~60 km, the proton 
inertial length is 𝑑*~74 km, and the proton plasma is 𝛽-~1.4. In Fig. 1f, the turbulent 
Alfvén number is 𝑀!,/012~0.34, satisfying the assumption of small fluctuations. 
Besides, half of the relative amplitudes of magnetic field fluctuations are close to 
𝑀!,/012 , suggesting substantial Alfvénic component. The average magnetic 

compressibility is 𝐶∥(𝑓()) =
|4'∥(6"#)|$

|4'∥(6"#)|$8|4'%(6"#)|$
~0.33, indicating the fluctuations are 

a mixture of Alfvén and compressible magnetosonic (fast and slow) modes36, where 
𝛿𝐵∥ and 𝛿𝐵$ are the fluctuating magnetic field parallel and perpendicular to B0. 

We first extract Alfvénic fluctuations from turbulence based on their 
incompressibility and fluctuating directions perpendicular to B0. Then, we develop a 
new method on the basis of former studies37,38 to obtain three-dimensional (3D) 
distributions of Alfvénic power at the MHD scales, allowing direct comparisons 
between observations and theory (see Methods). The structure of turbulence is 
described using 3D power distributions , i.e. magnetic power 𝑃'&(𝑘$, 𝑘∥, 𝑓()) and 
velocity power 𝑃9&(𝑘$, 𝑘∥, 𝑓())  (see Supplemental Material). The wavevectors are 
determined by combining the singular value decomposition method37 (to obtain 𝒌?:9;) 
and the multispacecraft timing method38 (to obtain 𝒌! ), allowing us to distinguish 
spatial and temporal evolutions without any spatiotemporal hypothesis, e.g., Taylorʼs 
hypothesis39. The combination of the two methods is valid only when 𝒌! is roughly 
aligned with 𝒌?:9;. Therefore, we present power distributions satisfying small angle θ 
between 𝒌!  and 𝒌?:9; , i.e., θ=10°, 15°, 20°, 25°, and 30°. The spectral results are 
displayed by taking the data set with θ=30° as an example, in view of the slight effects 
of θ (see Supplemental Material).  

Evidence for the Alfvénic weak-to-strong transition revealed from the 
Cluster observations 

Change in wavenumber distributions of magnetic energy from purely 
perpendicular/2D cascade to Goldreich-Sridhar cascade. 

The two-dimensional (2D) wavenumber distributions of magnetic energy are 
calculated by 

𝑃''(𝑘$, 𝑘∥) = @ 𝑃'&(𝑘$, 𝑘∥, 𝑓())𝑑𝑓()
<

=
. (1) 

𝑃A''(𝑘$, 𝑘∥) = 𝑃''(𝑘$, 𝑘∥)/𝑃'',>?@ is normalized by the maximum magnetic energy 

in all (𝑘$, 𝑘∥) bins, displayed by the spectral image in Fig. 2a and by contours in Fig. 

2b. Compared to the isotropic dotted curves, 𝑃A''(𝑘$, 𝑘∥) is prominently distributed 



   

 

 

along the 𝑘$  direction, suggesting a faster perpendicular cascade. This anisotropic 
behavior is more significant at higher wavenumbers, consistent with previous 
simulations40 and observations24,41.  

Moreover, 𝑃A''(𝑘$, 𝑘∥) is compared with 2D theoretical energy spectra in strong 

turbulence6,9 

𝐼!(𝑘$, 𝑘∥) ∝ 𝑘$
+A B⁄ expG−

𝐿=
, B⁄ J𝑘∥J

𝑀!,/012

D
B 𝑘$

E
B
K . (2) 

The injection scale L0 is approximately estimated by the correlation time (𝑇)~1400 s) 
and rms fluctuating proton velocity perpendicular to B0 ( 𝛿𝑉-$~ 33 km s-1). 
𝐼M!(𝑘$, 𝑘∥) = 𝐼!(𝑘$, 𝑘∥)/𝐼!,>?@ is normalized by the maximum magnetic energy in all 
(𝑘$, 𝑘∥) bins, displayed by color contours with black dashed curves in Fig. 2. The 2D 

distribution 𝑃A''(𝑘$, 𝑘∥) shows two different properties: (1) At 𝑘$ < 2 × 10+D	𝑘𝑚+,, 

𝑃A''(𝑘$, 𝑘∥) is almost unchanged with the increase of 𝑘$ and is mainly concentrated 

at 𝑘∥ < 7 × 10+F	𝑘𝑚+, , consistent with energy distributions in theoretical weak 

turbulence. (2) At 𝑘$ > 2 × 10+D	𝑘𝑚+,, 𝑃A''(𝑘$, 𝑘∥) starts to distribute to higher 𝑘∥, 

and both the wavenumber distribution and intensity change of 𝑃A''(𝑘$, 𝑘∥)  are 

primarily consistent with 𝐼M!(𝑘$, 𝑘∥). Besides, 𝑃A''(𝑘$, 𝑘∥) is in good agreement with 

the Goldreich-Sridhar9 scaling 𝑘∥ 	 ∝ 𝑘$
E/B  (marked by pink dotted lines). Thus, the 

properties at 𝑘$ > 2 × 10+D	𝑘𝑚+,  are closer to those in strong turbulence. The 
change from purely stretching along the 𝑘$ direction (2D) to following the Goldreich-

Sridhar9 scaling 𝑘∥ 	 ∝ 𝑘$
E/B in wavenumber space reveals a possible transition in the 

energy cascade. 

Sharp change in spectral slopes of magnetic energy spectral density from wave-
like (-2) to Kolmogorov-like (-5/3).  

Fig. 3a shows the compensated spectra 𝑘$
F/B𝐸''(𝑘$), where the magnetic energy 

spectral density is defined as 𝐸''(𝑘$) =
,
E
4''

$(H%)
H%

, and 𝛿𝐵!E(𝑘$) is magnetic energy 

density at 𝑘$ (see Methods). In Zone (2), 𝑘$
F/B𝐸''(𝑘$) is roughly consistent with 



   

 

 

𝑘$
F/B+E  (marked by the black dashed line), indicating that the spectral slopes of 

𝐸''(𝑘$) are around -2. Whereas in Zone (3), 𝑘$
F/B𝐸''(𝑘$) is almost flat at some 𝑘$, 

suggesting that 𝐸''(𝑘$) satisfies the Kolmogorov scaling (𝐸''(𝑘$) ∝ 𝑘$
+F/B). The 

sharp change in spectral slopes of 𝐸''(𝑘$) from -2 to -5/3 is apparent evidence for 
the transition of turbulence regimes9,25,26.  

Nonlinear parameter shows a Goldreich-Sridhar9 scaling in terms of wavenumber.  

Fig. 3b shows the variation between 𝑘∥ versus 𝑘$ estimated by taking the same 
values of Alfvénic magnetic energy. As 𝑘$ increases, 𝑘∥ is approximately stable at 
𝑘∥~7 × 10+F	𝑘𝑚+,  (marked by the horizontal line) in Zone (1). In contrast, the 

variation of 𝑘$  versus 𝑘∥  agrees with the Goldreich-Sridhar scaling 𝑘∥ 	 ∝ 𝑘$
E/B 

(marked by the purple line) in Zone (3). Fig. 3c shows 𝑘$ − 𝑘∥  distributions of 

nonlinearity parameter 𝜒''(𝑘$, 𝑘∥)~
H%4''(H%,H∥)

H∥'(
, which is one of the most critical 

parameters in distinguishing weak from strong turbulence8,10 (see Methods). At parallel 
and perpendicular wavenumbers with the same magnetic energy (Fig. 3b), 𝜒''  is 
much less than unity in Zone (1), whereas 𝜒''  increases approaching unity and 

follows the scaling 𝑘∥ 	 ∝ 𝑘$
E/B  in Zone (3). These results suggest a transition from 

weak to strong nonlinear interactions, in good agreement with current theory and 
simulations9,25,26.  

With the measurements of velocity fluctuations, we observe a similar transition 
process (see Supplemental Material). The transition scale (𝜆&') is estimated by the 
smallest perpendicular wavenumber of strong turbulence (𝑘$,&'), where 𝜆&'~1/𝑘$,&'. 
For both magnetic field and velocity data, 𝑘$,&' is around 3 × 10+D	𝑘𝑚+,, marked 
by the second vertical lines in Fig. 3 and Figure S4. The consistency in the transition 
scales estimated by magnetic field and velocity measurements further confirms the 
reliability of our findings. 

Here, we do not discuss fluctuations in Zone (2) and (4) of Fig. 3b-c for several 
reasons. A significant perturbation is present in Zone (2), resulting from the local 
magnetic energy enhancements around 𝑘$~1.8 × 10+D	𝑘𝑚+,  (Fig. 2), making the 
simultaneous existence of strong nonlinearity (𝜒''~1 at [𝑘$ ,𝑘∥]~[1.8 × 10+D, 4 ×
10+F]𝑘𝑚+,  and weak nonlinearity ( 𝜒'' ≪ 1  at [ 𝑘$ , 𝑘∥ ] ~ [ 2.3 × 10+D , 1 ×
10+D]𝑘𝑚+,	. Thus, we deduce that the weak-to-strong transition is more likely to occur 
in a ‘region’ rather than a critical wavenumber. The magnetic energy in Zone (4) is 
almost three orders of magnitude smaller than that in Zone (1) (Fig. 2), and thus the 
quantitative analysis is questionable. Moreover, the deviations of 𝜃 − 10° and 𝜃 −



   

 

 

15° data sets in Zone (3) of Fig. 3b are likely due to the limited data samples (see 
Supplemental Material). The uncertainties mentioned above do not affect our main 
conclusions. 

The change from single-frequency (~Alfvén frequency) to broadening-frequency 
fluctuations  

Fig. 4 presents the 𝑘$ − 𝑓1J(/ distribution of magnetic energy, where 𝑓1J(/ is the 
observed frequency in the plasma flow frame. At 𝑘$ < 5 × 10+F	𝑘𝑚+, , 𝑓1J(/ 
approaches to be concentrated around the theoretical frequencies of Alfvén modes42 𝑓!, 

where 𝑓! =
KH∥9'K
EL

 are marked by the horizontal dotted lines with error bars. At 

𝑘$ >1× 10+D	𝑘𝑚+, , the range of 𝑓1J(/  broadens, and a majority of fluctuating 
frequencies deviate from 𝑓! . Nevertheless, the boundary frequencies of these 

fluctuations are roughly consistent with the scaling 𝑓1J(/ ∝ 𝑘$
E/B (marked by the pink 

dashed line), indicating that magnetic energy at these wavenumbers satisfies the scaling 

𝑘∥ 	 ∝ 𝑘$
E/B due to 𝑓1J(/ ∝ 𝑘∥ for Alfvén modes. These results suggest that Alfvénic 

fluctuations with strong nonlinear interactions do not agree with linear dispersion 
relations, but they still satisfy the wavenumber scaling of Alfvén modes. The change 
from the single-frequency to broadening-frequency fluctuations with the increasing 𝑘$ 
suggests a possible transition of turbulence regimes.  

Implications of direct confirmation of Alfvénic weak-to-strong 
transition to astrophysical and space turbulence research 

In summary, the evidence presented above directly confirms the theoretical 
prediction of the Alfvénic weak-to-strong transition when MHD turbulence cascades 
from large to small scales, e.g., the changes of power spectral slopes (Fig. 3a) and the 
nonlinear parameter (Fig. 3c). The transition scales estimated by all evidence (listed in 
Table 1) are approximately consistent. Our observations demonstrate that the Alfvénic 
transition to strong turbulence with the critical balance is bound to occur with the 
increase of nonlinearity, regardless of the initial level of MHD fluctuations, pinpointing 
the universality of strong turbulence. Moreover, our observations show that turbulence 
can self-organize from 2D wave-like fluctuations to 3D strong turbulence. Thus, the 
debate on 2D turbulence43,44 vs. turbulence with scale-dependent anisotropy9,40 can be 
settled with the discovery of the Alfvénic transition. We want to point out that the 
plasma parameters in the analyzed event are common, and the Alfvénic weak-to-strong 
transition can occur in other astrophysical and space plasma systems. The impact of our 
findings goes beyond the study of turbulence itself to particle transport and acceleration, 
magnetic reconnection, star formation, and all the other relevant fields.  



   

 

 

 

Fig. 1 | An overview of fluctuations measured by Cluster-1 in the terrestrial 
magnetosheath on 2-3 December 2003. The data are displayed in GSE coordinates. a, 
magnetic field components (𝐵@, 𝐵M	and	𝐵N); b, proton bulk velocity (𝑉@, 𝑉M	and	𝑉N); c, 
proton and electron density; d, spectral slopes (𝛼 ) of magnetic field and velocity 

fluctuations between 0.001 Hz and 0.1𝑓)*. The two horizontal lines represent 𝛼 = − F
B
 

and 𝛼 = − B
E

. e, The proton plasma 𝛽- . f, The turbulent Alfvén Mach number 

(𝑀!,/012 =
49)
9'

) and half of the relative amplitudes of the magnetic field ( 4'
E'(

), where 

𝛿𝑉- and 𝛿𝐵 are rms proton velocity and magnetic field fluctuations, respectively. The 
fluctuations analyzed in detail are during 23:00-10:00 on 2-3 December, marked 
between the two vertical dashed lines. 



   

 

 

 

Fig. 2 | The comparison between wavenumber distributions of Alfvénic magnetic 

energy 𝑷?𝑩𝑨(𝒌$, 𝒌∥) and theoretical energy spectra9 𝑰A𝑨(𝒌$, 𝒌∥). a, The 2D spectral 

image represents 𝑃A''(𝑘$, 𝑘∥). The color contours with black dashed curves represent 

𝐼M!(𝑘$, 𝑘∥). b, For the contour continuity, we present the contours of 𝑃A''(𝑘$, 𝑘∥) with 

a low resolution. The filled 2D contours represent 𝑃A''(𝑘$, 𝑘∥) . 𝐼M!(𝑘$, 𝑘∥)  is 

displayed by color contours with black dashed curves. a,b, 𝐼M!(𝑘$, 𝑘∥) is in the same 

color map as 𝑃A''(𝑘$, 𝑘∥). The black dotted curves mark 𝑘 = [𝑘∥E + 𝑘$E = 0.01/𝑑* 

and 0.03/𝑑* . The pink and black dotted lines represent the scaling 𝑘∥ ∝ 𝑘$
E/B  and 

𝑘∥ ∝ 𝑘$, respectively. These figures utilize the data set with θ=30°.	

^
^

^
^

a b

weak weak strongstrong



   

 

 

 

Fig. 3 | a, The compensated spectra 𝑘$
F/B𝐸''(𝑘$). The magnetic field fluctuations are 

in Alfvén speed units to facilitate comparison to velocity fluctuations. The black dashed 

line represents 𝑘$
F/B𝐸''(𝑘$) ∝ 𝑘$

F/B+E used as the reference. b, The variation of 𝑘∥ 

versus 𝑘$ . The purple dotted line represents the scaling 𝑘∥ ∝ 𝑘$
E/B . The horizontal 

dotted line represents 𝑘∥ = 7 × 10+F	𝑘𝑚+,. a-b, Blue, red, yellow, purple, and green 
colors represent observations from data sets with θ=10°, 15°, 20°, 25°, and 30°, 
respectively. c, The nonlinearity parameter 𝜒''(𝑘$, 𝑘∥). The purple and white dotted 

lines represent the scaling 𝑘∥ ∝ 𝑘$
E/B  and 𝑘∥ ∝ 𝑘$ , respectively. 𝜒''  spectrum is 

calculated using the data set with θ=30°. The 𝑘$ distributions are roughly divided into 
four Zones: Zone (1) 5 × 10+F < 𝑘$ < 1.6 × 10+D	𝑘𝑚+, , Zone (2) 1.6 × 10+D <
𝑘$ < 3 × 10+D	𝑘𝑚+,, Zone (3) 3 × 10+D < 𝑘$ < 7 × 10+D	𝑘𝑚+,, and Zone (4)	7 ×
10+D < 𝑘$ < 1 × 10+B	𝑘𝑚+, . The first, second, and third vertical dotted lines are 

around the maximum of 𝑘$
F/B𝐸''(𝑘$), the beginning of flattened 𝑘$

+
,𝐸''(𝑘$), and the 



   

 

 

end of flattened 𝑘$
F/B𝐸''(𝑘$), respectively. 

 

Fig. 4 | The 𝑘$ − 𝑓1J(/ distribution of Alfvénic magnetic energy in the plasma flow 

frame. 𝑃A''(𝑘$, 𝑓1J(/) = 𝑃''(𝑘$, 𝑓1J(/)/𝑃'',>?@  is normalized by the maximum 

magnetic energy in all (𝑘$, 𝑓1J(/ ) bins. The pink and red dotted lines represent the 

scaling 𝑓1J(/ ∝ 𝑘$
E/B and 𝑓1J(/ ∝ 𝑘$. The two horizontal dotted lines with error bars 

represent the theoretical Alfvénic frequencies 𝑓! =
KH∥9'K
EL

. 𝑘∥  are estimated by 𝑘∥ 

values in Zone (1) of Fig. 3b and Figure S4b, where 𝑘∥~7 × 10+F	𝑘𝑚+,  and 
1 × 10+D	𝑘𝑚+,. 𝑓! uncertainties are estimated by the standard value of the Alfvén 
speed 𝑉!, where 𝑉! = 106 ± 11	𝑘𝑚	𝑠+,. This figure utilizes the data set with θ=30°. 



   

 

 

 

 Weak turbulence Strong turbulence 

The wavenumber 
distributions of 
magnetic field 
fluctuations 

Purely perpendicular 
cascade  

𝑘$ < 2 × 10+D	𝑘𝑚+, 

Goldreich-Sridhar cascade 

𝑘$ > 2 × 10+D	𝑘𝑚+, 

Spectral slopes of 
magnetic energy  

Wave-like (-2) 

1.6 × 10+D < 𝑘$
< 3 × 10+D	𝑘𝑚+, 

Kolmogorov-like (-5/3) 

3 × 10+D < 𝑘$ < 7 × 10+D	𝑘𝑚+, 

Nonlinearity 
parameter (𝜒') 

𝜒' ≪ 1 

𝑘$ < 1 × 10+D	𝑘𝑚+, 

𝜒'~1	&	𝜒' ≥ 1 

3 × 10+D < 𝑘$ < 7 × 10+D	𝑘𝑚+, 

Frequency-
wavenumber 
distributions 

Single-frequency 
fluctuations approaching to 
𝑓!  

𝑘$ < 5 × 10+F	𝑘𝑚+, 

Broadening-frequency fluctuations 
with 𝑓1J(/ ∝ 𝑘$

E/B boundary 

𝑘$ > 1 × 10+D	𝑘𝑚+, 

Table 1. The transition wavenumbers are estimated by all evidence. 

Methods 

Geocentric-solar-ecliptic (GSE) coordinates 

We use the GSE coordinate in this study. XGSE points towards the Sun from the Earth, 
ZGSE orients along the ecliptic north pole, and YGSE completes a right-handed system. 

The trace power spectral densities 

The trace magnetic and velocity power spectral densities (𝑃' = 𝑃',Q + 𝑃',R + 𝑃',S and 
𝑃9 = 𝑃9,Q + 𝑃9,R + 𝑃9,S) are calculated by applying the fast Fourier transform with 
three-point centered smoothing in GSE coordinates. We choose the intermediate instant 
of each time window as the time point where the spectral slope varies with time.   

Alfvén mode decomposition  

We calculate 3D wavenumber distributions of magnetic and velocity power following 
our previous work24. The mode decomposition method is consistent with numerical 
simulation of CMHD turbulence, conducive to direct comparison with their results19. 

First, we obtain wavelet coefficients of magnetic field and velocity fluctuations by 
Morlet-wavelet transforms in GSE coordinates35. To eliminate the edge effect due to 



   

 

 

finite-length time series, we perform wavelet transforms twice the length of the studied 
period and cut off the affected periods. 

Second, based on the linearized Gauss’s law for magnetism (𝒌:9; ∙ 𝛿𝑩 = 0 ), the 
singular value decomposition (SVD) method of magnetic wavelet coefficients is used 
to calculate the wavevector direction37	(𝒌:9;(𝑡, 𝑓())), where 𝛿𝑩 represents magnetic 
field fluctuations. Since relative satellite separations are much shorter than the half-
wavelength at the MHD scales, the properties of fluctuations simultaneously measured 
by the four Cluster spacecraft are similar. Thus, we average the wavevector and 

background magnetic field over four spacecraft: 𝒌:9; =
,
D
(𝒌?:9;,&, + 𝒌?:9;,&E +

𝒌?:9;,&B + 𝒌?:9;,&D) and 𝑩= =
,
D
e𝑩=,&, + 𝑩=,&E + 𝑩=,&B + 𝑩=,&Df, where C1, C2, C3, 

and C4 denote the four Cluster spacecraft.  

Third, we extract the Alfvénic components from velocity fluctuations (𝛿𝑽-) based on 

their incompressibility (𝒌?:9; ∙ 𝛿𝑽- = 0) and perpendicular fluctuating directions (𝒃?= ∙

𝛿𝑽- = 0) in wavenumber space, where 𝒌?:9; =
𝒌-./
|𝒌-./|

 and 𝒃?= =
𝑩(
|𝑩(|

 are the unit 

vectors of 𝒌:9; and 𝑩𝟎, respectively. Moreover, we extract Alfvénic magnetic field 
fluctuations based on 𝒌?:9; ∙ 𝛿𝑩 = 0 and 𝒃?= ∙ 𝛿𝑩 = 0, according to the linearized 
induction equation 

𝜔𝛿𝑩 = 𝒌 × e𝑩= × 𝛿𝑽-f~|𝒌|𝒌?:9; × e𝑩= × 𝛿𝑽-f, (1) 

where 𝒌 is the wavevector. Thus, Alfvénic velocity and magnetic field fluctuations 

are in the same direction ( 𝒌
V-./×𝒃V(
K𝒌V-./×𝒃V(K

) (see Schematic in Supplemental Material). 

Fourth, the Alfvénic magnetic power averaged over four spacecraft at each time 𝑡 and 
𝑓() is given by 

𝑃''(𝑡, 𝑓()) =
1
4
e𝑊'',&,𝑊'',&,

∗ +𝑊'',&E𝑊'',&E
∗ +𝑊'',&B𝑊'',&B

∗ +𝑊'',&D𝑊'',&D
∗f(2). 

The Alfvénic velocity power measured by C1 at each time 𝑡 and 𝑓() is given by 

𝑃9'(𝑡, 𝑓()) = 𝑊9',&,𝑊9',&,
∗ (3). 

Fifth, since the SVD method only determines the wavevector direction and cannot 
determine wavenumbers, we further calculate wavevectors (𝒌!(𝑡, 𝑓()) ) using the 
multispacecraft timing analysis based on phase differences between the Alfvénic 
magnetic field from four spacecraft38. The phase differences are determined by six 
cross-correlations35, i.e., 𝑊''

,E = 〈𝑊'',&,𝑊'',&E
∗〉, 𝑊''

,B = 〈𝑊'',&,𝑊'',&B
∗〉, 𝑊''

,D =



   

 

 

〈𝑊'',&,𝑊'',&D
∗〉 , 𝑊''

EB = 〈𝑊'',&E𝑊'',&B
∗〉 , 𝑊''

ED = 〈𝑊'',&E𝑊'',&D
∗〉 , and 𝑊''

BD =
〈𝑊'',&B𝑊'',&D

∗〉. The angular brackets denote a time average over 256 s, to obtain 
reliable phase differences. Besides, magnetic field data for timing analysis are 
interpolated to a time resolution of 1/23 samples s-1, to ensure sufficient time resolutions. 

The combination of the SVD method and multispacecraft timing analysis allows us to 
determine wavevectors independent of any spatiotemporal hypothesis, e.g., Taylorʼs 
hypothesis39. However, this combination is valid only when 𝒌! is aligned with 𝒌?:9;. 
Under such a condition, the extraction process (Step 3) is reliable. The observations 
show that 𝒌?:9; are not entirely aligned with 𝒌!, indicating that not all fluctuations 
are aligned with the minimum singular value of the magnetic field and satisfy 𝑓() ∝ 𝑘 
hypothesis. In contrast, the fluctuations are more likely a mixture of multiple modes 
with different dispersion relations. Therefore, we only analyze fluctuations with small 
angle θ between 𝒌?:9; and 𝒌!, generating five data sets with θ=10°, 15°, 20°, 25°, and 
30°.  

Sixth, the frequency 𝑓1J(/(𝑡, 𝑓()) is obtained by correcting the Doppler shift 𝑓1J(/ =

𝑓() −
𝒌𝑨∙𝑽
EL

, where 𝑓1J(/  is the frequency in the plasma flow frame, 𝑽  is roughly 

equivalent to the proton bulk velocity (𝑽-) due to the slow spacecraft speed. This study 
utilizes the representation of absolute frequencies: 

(𝑓1J(/ , 𝒌!) = n
(𝑓1J(/ , 𝒌!),												for			𝑓1J(/ > 0
(−𝑓1J(/ , −𝒌!),							for			𝑓1J(/ < 0	 . (4) 

Considering the applicability of MHD theory and measurement limitations, we analyze 

fluctuations satisfying ,
,==∗\"#

< 𝑘 < 𝑚𝑖𝑛	( =.,
>?@	(\0,1#0)

, EL
E\"#

)  and E
/∗
< 𝑓1J(/ <

,
E
𝑓)* , 

where 𝑑()  represents relative satellite separations, 𝑚𝑖𝑛(*) represents the minimum 
value, 𝑚𝑎𝑥(*) represents the maximum value, 𝑑*  is proton inertial length, 𝑟)*  is 
proton gyro-radius, and 𝑡∗ is the duration studied. The Alfvénic power is set to zero 
beyond this wavenumber, frequency, and angle θ range and is averaged over all valid 
time points at each 𝑓().  

Finally, we construct a set of 400×400×400 bins to obtain wavenumber distributions 
of magnetic (velocity) power 𝑃''(𝑘$, 𝑘∥, 𝑓()) (𝑃9'(𝑘$, 𝑘∥, 𝑓())), where the parallel 

wavenumber is 𝑘∥ = 𝒌! ∙ 𝒃?=, and the perpendicular wavenumber is 𝑘$ = [𝒌!E − 𝑘∥E. 

Each bin subtends approximately the same 𝑘$ , 𝑘∥ , and 𝑓() . The maximum 

wavenumber is set as 𝑘>?@ = 1.1 × =.,
\0

, and the step length of each bin is 𝑑𝑘 = H234
D==

.  

Alfvén speed units 
For comparison, this study presents the fluctuating magnetic field in Alfvén speed units, 
which is normalized by v𝜇=𝑚-𝑁=, where 𝜇= is the vacuum permeability, 𝑚- is the 



   

 

 

proton mass, and 𝑁= is the mean proton density. 

Magnetic energy spectral density 

This study defines the energy spectral density of magnetic field as 𝐸''(𝑘$) =
,
E
4''

$(H%)
H%

,  
where the Alfvénic magnetic energy density is calculated by 𝛿𝐵!E(𝑘$) = 2 ×
∑ ∑ ∫ 𝑃''(𝑘$, 𝑘∥, 𝑓())𝑑𝑓()

<
=

H∥→<
H∥`=

H%→<
H%`H% . 

The nonlinearity parameter 

The nonlinearity parameter is approximately estimated by 𝜒''(𝑘$, 𝑘∥)~
H%4''(H%,H∥)

H∥'(
, 

where the Alfvénic magnetic energy density is calculated by 𝛿𝐵!E(𝑘$, 𝑘∥) =

∑ ∑ ∫ 𝑃''(𝑘$, 𝑘∥, 𝑓())
<
= 𝑑𝑓()

H∥→<
H∥`H∥

H%→<
H%`H% , and 𝐵= in Alfvén speed units is around 106 

km/s. 

The frequency-wavenumber distribution of magnetic energy 

The frequency-wavenumber distribution of magnetic energy is approximately 

estimated by 𝑃''(𝑘$, 𝑓())~∑ 𝑃'&(𝑘$, 𝑘∥, 𝑓())∆𝑓()
H∥→<
H∥`=

 and transformed into the 

plasma flow frame by correcting the Doppler shift 𝑓1J(/ = 𝑓() −
𝒌𝑨∙𝑽
EL

. 

Data Availability 
The Cluster data are available at https://cdaweb.gsfc.nasa.gov. 
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Supplementary information 

Details of examination of the turbulence state 

To examine the turbulence state, we calclulate the normalized correlation function 
𝑅(𝜏)/𝑅(0), where the correlation function 𝑅(𝜏) is defined as 〈𝛿𝐵(𝑡)𝛿𝐵(𝑡 + 𝜏)〉, 𝜏 
is the timescale, and the angular brackets represent a time average over the length of 
the moving time window (5 hours). Figure S1 shows 𝑅(𝜏)/𝑅(0) for 𝛿𝐵$, and 𝛿𝐵$E 
components of magnetic field fluctuations in field-aligned coordinates. The basis 
vectors of coordinate axes 𝒆∥ , 𝒆$, , and 𝒆$E  are in 𝒃?= , (𝒃?= × 𝑿?a:b) × 𝒃?= , and 
𝒃?= × 𝑿?a:b directions, respectively. 𝒃?= is the unit vector of the mean magnetic field 
in each time window. 𝑿?a:b is the unit vector towards the Sun from the Earth.  

This study estimates the correlation time 𝑇)~∫ 𝑅(𝜏)/𝑅(0)c(d)→ 5
$6

= 𝑑𝜏. In Figure S1, 

𝑇)~1400 s is much less than the time window length (5 hours), suggesting that the 
fluctuations are approximately stationary. Moreover, the profiles of 𝑅(𝜏)/𝑅(0) 
obtained from all time windows are similar and mainly concentrated within one 
standard deviation (marked by yellow shadows), suggesting that the starting time of the 
moving time window has a slight influence on 𝑅(𝜏)/𝑅(0), and thus fluctuations are 
homogeneous. Above all, it is reasonable to describe structures of turbulent fluctuations 
using three-dimensional (3D) power distributions. 



   

 

 

 

Figure S1: The normalized correlation function 𝑅(𝜏)/𝑅(0) versus 𝜏 for 𝛿𝐵$, and 
𝛿𝐵$E  in field-aligned coordinates. The black curves represent 𝑅(𝜏)/𝑅(0) from all 
time windows. The red curves represent average values (s) of 𝑅(𝜏)/𝑅(0) over all time 
window. The yellow shaded regions represent [𝑠 − 𝜎, 𝑠 + 𝜎], where 𝜎 represents the 

standard deviations of 𝑅(𝜏)/𝑅(0). The purple horizontal dashed lines represent c(d)
c(=)

=

,
J
 and ,

EJ
. 

One-dimensional (1D) and two-dimensional (2D) wavenumber distributions of 
Alfvénic magnetic energy 

The 1D wavenumber distributions of Alfvénic magnetic energy are estimated by 

𝑃''(𝑘$) =� @ 𝑃''(𝑘$, 𝑘∥, 𝑓())𝑑𝑓()
<

=

H∥→<

H∥`=
, (1) 



   

 

 

𝑃''(𝑘∥) =� @ 𝑃''(𝑘$, 𝑘∥, 𝑓())𝑑𝑓() .
<

=

H%→<

H%`=
(2) 

The 2D wavenumber distributions of Alfvénic magnetic energy are estimated by 

𝑃''(𝑘$, 𝑘∥) = @ 𝑃'&(𝑘$, 𝑘∥, 𝑓())𝑑𝑓()
<

=
. (3) 

In Figure S2, 1D wavenumber distributions of Alfvénic magnetic energy from data 
sets with different angle-θ limits nearly overlap, both for 𝑃''(𝑘$)  and 𝑃''(𝑘∥) . 
Nevertheless, 1D wavenumber distributions from data sets with θ=10° and 15° show 
significant deviations from others, which may be responsible for the limited data 
samples. Due to the limited data samples, we can see many vacant bins are present in 
2D wavenumber distributions in Figure S3. With the relaxation of the angle-θ limits, 
more data samples are involved. Overall, Alfvénic magnetic energy using data sets with 
different angle-θ limits shows similar wavenumber distributions in Figure S2 and S3. 

 

Figure S2: 1D wavenumber distributions of Alfvénic magnetic energy using data sets 
with θ=10°, 15°, 20°, 25°, and 30°, respectively. 𝑃''(𝑘$) is displayed by solid curves. 
𝑃''(𝑘∥) is displayed by dotted curves. Blue, red, yellow, purple, and green colors 
represent observations from data sets with θ=10°, 15°, 20°, 25°, and 30°, respectively. 



   

 

 

 

Figure S3: 2D wavenumber distributions of Alfvénic magnetic energy using data sets 
with θ=10°, 15°, 20°, and 25°, respectively. For each figure, same format as Fig. 2a. The 

2D spectral image represents 𝑃A''(𝑘$, 𝑘∥). The color contours with black dashed curves 

represent 𝐼M!(𝑘$, 𝑘∥). 𝐼M!(𝑘$, 𝑘∥) is in the same color map as 𝑃A''(𝑘$, 𝑘∥). The black 

dotted curves mark 𝑘 = [𝑘∥E + 𝑘$E = 0.01/𝑑*  and 0.03/𝑑* . The pink and black 

dotted lines represent the scaling 𝑘∥ ∝ 𝑘$
E/B and 𝑘∥ ∝ 𝑘$, respectively. 

The energy spectra and nonlinear parameters with velocity measurements 

We observe a similar Alfvénic weak-to-strong transition with the measurements of 
velocity fluctuations. The velocity energy spectral density is defined as 𝐸9'(𝑘$) =
,
E
49'

$(H%)
H%

,  where the Alfvénic velocity energy density is calculated by 𝛿𝑉!E(𝑘$) =

2 × ∑ ∑ ∫ 𝑃9'(𝑘$, 𝑘∥, 𝑓())𝑑𝑓()
<
=

H∥→<
H∥`=

H%→<
H%`H% . Figure S4a shows the sharp change in 

spectral slopes of 𝐸9'(𝑘$)	from wave-like (-2) to Kolmogorov-like (-5/3). In Figure 
S4b, for most of the data points, 𝑘∥ is approximately stable within 𝑘∥~[7 × 10+F, 1 ×
10+D]	𝑘𝑚+,  in Zone (1), whereas the variation of 𝑘$  versus 𝑘∥  agrees with the 
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scaling 𝑘∥ 	 ∝ 𝑘$
E/B  in Zone (3). The nonlinearity parameter is estimated as 

𝜒9'(𝑘$, 𝑘∥) =
H%49'(H%,H∥)

H∥9&
, where the Alfvénic velocity energy density is estimated by 

𝛿𝑉!E(𝑘$, 𝑘∥) = ∑ ∑ ∫ 𝑃9'(𝑘$, 𝑘∥, 𝑓())
<
= 𝑑𝑓()

H∥→<
H∥`H∥

H%→<
H%`H% . Figure S4c shows that, at the 

corresponding wavenumbers in Figure S4b, 𝜒9' is much less than unity in Zone (1), 

whereas 𝜒9' increases approaching unity and follows the scaling 𝑘∥ 	 ∝ 𝑘$
E/B in Zone 

(3).  

 

Figure S4: a, The compensated spectra 𝑘$
F/B𝐸9'(𝑘$). The black dashed line represents 

∝ 𝑘$
F/B+E. b, The variation of 𝑘∥ versus 𝑘$ by taking the same values of velocity 

energy. The purple dotted line represents the scaling 𝑘∥ ∝ 𝑘$
E/B. The horizontal dotted 

lines represent 𝑘∥ = 7 × 10+F	𝑘𝑚+,  and 1 × 10+D	𝑘𝑚+, . a-b, Blue, red, yellow, 
purple, and green colors represent observations from data sets with θ=10°, 15°, 20°, 25°, 
and 30°, respectively. c, The nonlinearity parameter 𝜒9'(𝑘$, 𝑘∥). The purple and white 



   

 

 

dotted lines represent the scaling 𝑘∥ ∝ 𝑘$
E/B  and 𝑘∥ ∝ 𝑘$ , respectively. 𝜒9'  is 

calculated using the data set with θ=30°. The 𝑘$ distributions are roughly divided into 
four Zones: Zone (1) 5 × 10+F < 𝑘$ < 2 × 10+D	𝑘𝑚+,, Zone (2) 2 × 10+D < 𝑘$ <
3 × 10+D	𝑘𝑚+, , Zone (3) 3 × 10+D < 𝑘$ < 7 × 10+D	𝑘𝑚+, , and Zone (4) 7 ×
10+D < 𝑘$ < 1 × 10+B	𝑘𝑚+, . The first, second, and third vertical dotted lines are 

around the maximum of 𝑘$
F/B𝐸9'(𝑘$), the beginning of flattened 𝑘$

F/B𝐸9'(𝑘$), and 

the end of flattened 𝑘$
F/B𝐸9'(𝑘$), respectively. 

Schematic of Alfvén mode decomposition from turbulent fluctuations  

Figure S5 shows a coordinate in wavenumber space, determined by the unit vectors 
of the wavevector and background magnetic field (𝒌?:9; and 𝒃?=). The basis vectors of 

coordinate axes are in 𝒃?= , 𝒌?$,efg	eh	(i789,j()	klmno =
𝒌V-./×𝒃V(
|𝒌V-./×𝒃V(|

, and 

𝒌?$,pn	(i789,j()	klmno = 𝒃?= × 𝒌?$,efg	eh	(i789,j()	klmno  directions. The Alfvénic magnetic 

field and velocity fluctuations are along the 𝝃A! = 𝒌?$,efg	eh	(i789,j()	klmno direction. The 

wavevectors (𝒌!) calculated by multispacecraft timing analysis on Alfvénic magnetic 
field are not entirely alighted with 𝒌?:9;. Thus, we set the angle θ between 𝒌! and 
𝒌?:9; as a threshold and only analyze the fluctuations with 𝒌! inside the red cone.  

 

Figure S5: Schematic of Alfvén mode decomposition from the fluctuations. 


